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The virtues of our predecessors are to be proud of. 
Not to do so is shameful cowardice. 

A. S. Pushkin 

The problem of the ncn-linear, behaviour and stability loss of bars and shells under finite deflection is discussed. The one- 
dimensional model, which plays a major part in the formulation of non-linear stability problems, is described in detail. In this 
connection, Ivan Grigor'yevieh Bubnov's problem on the behaviour of a thin elastic cylindrical panel is analysed (the problem 
was solved by him in 19)2 and was the first study on finite deflections of thin shells). The significance of this result in the theory 
of shells in its own fight and from the perspective of the subsequent development of the theory is discussed. The importance of 
Bubnov's results in shell theory is pointed out. This also includes his solution of the non-linear behaviour of circular plates and 
plane elastic panels. This is why he can be regarded as a forerunner in formulating the equations of finite deflections of elastic 
thin-walled Foeppl-gafum(m-Marguerre surfaces. O 1997 Elsevier Science Ltd. All rights reserved. 

The development of the theory of elastic shells subject to finite deflection, especially in relation to the problem 
of stability, has been strongly influenced by results on the non-linear behaviour and snapping of flat plane bars. 
These results made it possible to establish a new mechanism of stability loss occurring for finite deflections because 
of a deflection jump, i.e. snapping, unlike stability loss for small deflections. 

This process was first described by T'tmoshenko [1] (1925) in an article devoted to the loss of stability of a fiat 
plane sinusoidal bimetal strip with clamped ends, heated uniformly over its thickness and length. It was established 
that because of the deflection and compression of the strip in the longitudinal direction it will snap towards the 
centre of curvature at temperature 

r_--(l+c) - 
[ l O t - I n  ) ] !  (0.1) 

where 

2 ( l - m )  3tz h 2 

¢ =  3"f3 m , m = - ~ r  

H is the elevation of the central axis of the strip, h and I are its thickness and length, and cq and ua are the coefficients 
of linear thermal expansion of the bimetal layers. If the temperature is subsequently reduced the strip will snap 
in the opposite direction at a temperature 

1 - c T_ (0.2) 
T÷=I+ c 

In modern terminology, these can be called the upper and lower critical temperatures T_ and 7"+. Timoshenko 
also obtained expressions for the deflections leading to snapping on the assumption that deflection varies along 
the axis as the sine function over a half-cycle. In this way a new mechanism of stability loss was described, which 
is well known from file practice of using bimetal elements in thermostats and plane-spherical perfume containers. 
In the paper under consideration attention was devoted only to bimetal elements in thermostats. An equivalent 
uniform bar was introduced in place of a bimetal one, and questions which would lead into a blind alley in the 
traditional approach were circumvented. The paper was noted by specialists working on bimetals, but completely 
ignored by those working on the theory of plates and shells. 
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Ten years later in a paper entitled "Buckling of flat bars and slightly curved plates" [2]. Timoshenko considered 
a flat sinusoidal bar damped at the ends subject to a uniform transverse pressure q parallel to the centre of curvature 
of the bar. He obtained the dependence of the deflection of the central axis of the bar on the transverse pressure 
and analysed the forms of equilibrium of the bar and their stability (the analysis below differs from Timoshenko's), 
determining the loads at which downwards snapping (q_) upwards snapping (q+) of the bar relative to the initial 
centre of curvature occurs. Since the deflection amplitude parameter was introduced in the approximate solution 
for a clamped bar subject to transverse load only, it became possible to extend this solution to other loadings by 
an appropriate choice of this parameter. For a bimetal bar the critical temperatures similar to (0.1) and (0.2) were 
given. Earlier solutions by Navier [3] (1926), Nadai [4] (1915), and Biezeno [51 (1929) for the case of a central 
point force acting on a flat bar damped at the ends were mentioned. However, in these papers there is no description 
of the whole snapping process. 

The mechanism of bar snapping established by Timoshenko and the critical loads q_ and q+ found by him 
made it possible to look at the problem of the loss of stability in thin shells from the same point of view and to 
obtain the first results on the non-linear behaviour of a spherical shell subject to uniform radial pressure, and a 
circular cylindrical shell subject to uniform longitudinal compression. This was done by K~mhn and Tsien in [6, 
7] (1939-1941). 

Timoshenko's results [2] were extended by Grigolyuk [8] (1951) to the case of the asymmetric snapping of a flat 
bar. A complete mechanical picture of the process was established. In [8] Bubnov's method of solving the finite 
deflection equation for a fiat sinusoidal bar with clamped ends subject to a uniform pressure q and representing 
the deflection as a two-parameter function 

w = w 0 sin rd~ + w I sin 2 ~  (~ = x / l) 

was used to obtain the following relations 

Wo ~ -3Wo 2 + ( a w l  2 + 2 + m ) W  o - a w l  2 =-~Tq'm 

w? + Wo + m wt =0 (0.3) 

2 
k2= ~ {W2 - " ~  o-2Wo+4Wj) 

w o _ w I = ql 4 4J k 2 Nl 2 
Wo=--~-, W,- -~- ,  q" EJH' m = ~ - y ,  = E./ 

Here I is the bar length, x is the longitudinal coordinate, E is Young's modulus, J is the moment of inertia of the 
cross-section of the bar, H is the elevation of the bar, N is the longitudinal force, and F is the cross-section area 
of the bar. 

This implies the following solution for the axially symmetric snapping of the bar with W 1 = 0 
2 

W~-3W~ +(2+m)Wo= 4 . k 2 _~..~...(Wo2_2Wo) --,j- q m, = 
/~ m 

=2 5 4 

q - - -~q  + mk6-(l+2m)g2k4+(2+m)~4k z = 0  

which yields the following expressions for the upper and lower critical loads q*_ and q~. obtained by Timosbenko [2] 

and the corresponding deflections and longitudinal force parameters 

Wo~ = 1 :~-~-~ ~/I-m, Wo,.2 = 1 +2----~ 41-m 
3 3 

Snapping is possible when 0 < m <~ 1 with q~ --+ oo ifm = O. Graphs of q* = q*(Wo) and ~ = ~(q*) are shown 
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Fig. 1. Fig. 2. 

in Figs I and 2 for vaJ'ious values of the geometry paramete r  m. In Fig. 3 we show similar curves for m = 0.5. These 
can be used as examples to demonstra te  the process of symmetric snapping of a bar  subject to a load (I) and when 
there is no load (II). We denote  by III  the zone of unstable equilibrium of the bar. 

For  asymmetric  snapping (W 1 ~ 0) Eqs (0.3) admit  of the solution 
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Fig. 3. Fig. 4. 
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For asymmetric snapping it follows that the longitudinal force is equal to the second Eulerian critical force for a 
rectilinear bar and asymmetric snapping occurs at loads 

with the corresponding deflections 

W0;,, = 1:1: ~/I - 4m 

W0±~.2= = l ± } (~/1 - 4m + ~ - + - ~  ) 

From the condition q~: = q~as we obtain the boundary between the snapping forms: m = 2/11. The functions 
q* = q*(Wo) for symmetric and asymmetric snapping and m = 0.1 are shown in Fig. 4. The numbers I and II denote 
the sections of the deformation curve corresponding to the presence and absence of a load, while III corresponds 
to sections of symmetric and asymmetric unstable equilibrium state. In Fig. 5 we show graphs of the upper critical 
load q*_ and lower critical load q~. for symmetric snapping (Timoshenko, curves I) and asymmetric snapping 
(Grigolyuk, curves II). 

An advantage of the approximate solutions [1, 2, 8] is that one can obtain explicitly the necessary parameters 
of the problem on the loss of stability of the bar and reveal the mechanism of its behaviour for various values of 
m. 

This enables us to obtain a deeper understanding of the part played by Bubnov's research in the problem under 
consideration. 

It should be observed that in [9, 10] Bubnov considered a parabolic cylindrical panel of infinite length subject 
to a transverse load, rather than a bar. He obtained all the equations necessary to solve the problem, offering a 
formal mathematical description of snapping as early as in 1902. 

1. A P A R A B O L I C  P A N E L  S U B J E C T  TO F I N I T E  D E F L E C T I O N  

Consider a cylindrical panel of infinite length whose median surface is traced by a parabola of degree two. It is 
shown schematically in Fig. 6. We will describe the deformation of such a weakly curved panel assuming that it is 
clamped along the parallel sides so that the support resists rotation of the edges with stiffness tx M and their coming 
together during the deformation process with stiffness ct N. In the vertical direction the panel is loaded by uniform 
pressure q and horizontally by stretching forces No, constant along the edges. The panel has a width l, thickness 
h, and is made from a material with modulus of elasticity E and Poisson's ratio ~t. 

To describe the equilibrium state of the panel we use the equations 

dN = O, = q (0 <_ x < l) (1.1) 
dx "~-'~- ~,dx2 dx 2 - -  

where w and x are the deflection of the panel and the distance along the axis connecting the supports, D = 
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Fig. 5. Fig. 6. 
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Eh3/[12.(1 - la2)] is the cylindrical stiffness of the panel, W = --4H(x/l)(1 -x/ l )  is the initial shape of the median 
surface of the panel, and H is the largest deflection of the median surface from a plane. The relative outward force 
N in the panel is related to the tangential displacements of the median surface u and the deflection w by a relation 
which follows from Hooke's law 

] (1.2) 

The boundary conditions corresponding to the chosen method of describing the panel are 

dw 
w = 0 ,  M = - C t M - ~ - ,  N = o t N u + N  o 

dw 
w = 0 ,  M=O~M--~-, N =-otlvu + N o 

where M = -Dd2w/dx 2 is the specific bending moment in the plate. 
The above boundary-value problem has the following solution 

for x = 0 (1.3) 

for;x =1 

. 1+~;,~ ½ N; 
u = 2(2+a;~)t(I)-  t({)+ 12(2+cx~)(2{-1) 

![ :.,2} 
+L I ,..o-- +,=1,,,,:,,,:> 

the relation between the external load and inner forces being 

k2 2N;._ 
2+~ N 2+ct N 

(1.4) 

(1.5) 

Here we "ave used the following dimensionless variables: the transversal coordinate ~ = x/l, the horizontal and 
vertical tt ,placements of the median surface of the plate u* = ul/h 2 and w* = w/h, the vertical and horizontal 
distributed loads q* = ql4/(Dh) and N~ = NolZ/D, the outward force parameter k 2 = NI2/D, the parameter % = 
8H/h denoting the initial dimensionless amplitude of the parabolic irregularity of the panel, and the transversal 
and bending stiffness ot~, = a,v/h2/(12D) and ~t~ = obnl/D of the supported edges of the plate. 

Once the integral 1(~) is computed, (1.5) gives a quadratic equation for the dimensionless vertical transverse load 

[31a,.07' ch2(k/2)shk-k +48o~(thk_kl+2k2](qO_k2~.)2 + 7  7) j, (1.6) 

[ " r /l + 8 k ~ N ° - 4 k  8 +1 = 0  
OtN ~, OtN 

As a result, the large~;t deflection of the panel observed along the central line can be determined using (1.4) 

the stresses on the upper and lower sides of the panel along the central line and along the edges being given by 
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o'(0) = o'(i)= ,2 :~ ~r (~ -2 ) (q"-  #<2~) 
where o* = ahl2/D are the dimensionless stresses. 

(1.8) 

2. B U B N O V ' S  S O L U T I O N  

We will now compare the above solution of the problem of panel deformation with that obtained by Bubnov. 
For a parabolic panel with clamped longitudinal edges, using the elastic properties of the longitudinal supports in 
the horizontal plane he gave the following equation relating the outward force parameter to the vertical load ([9], 
"Supplement 1. Influence of the curvature of the sheet", formula (40)) 
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Fig. 8. Fig. 9. 
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where 

,..r:.+:: F2(u)=945 L~ "i-6"-t4" ~J J 

Z/(u)  u ~,thqrff J 

Here p is the distributed vertical load (in this paper it is denoted by q), E and 11 are the modulus of elasticity and 
Poisson's ratio of rite material of the plate, t and a are the thickness and half-width of the plate (h and 1/2), u is the 
coefficient of the outward force in the plate (k2/4), T = a~h/[2(1 - !12)] is the compression--expansion stiffness of the 
support of the plate in its plane, and a is a parameter defining the curvature of the panel, which can be written as 

1 tit 3 E 
c t = 6 ( l _ i t  2) a 4 pU 

where rl is the largest initial deflection amplitude of the panel (H in the notation of the present paper). As a result, 
a corresponds to the fraction k2k/q * and Bubnov's equations stated above yield the equation 

3k s h k - k  + 4 8 ( l _ k c t h k ) + 2 k 2 ] ( q .  _k2~,)2+ 
sh2(k / 2) 

where the notation of the present paper is used. This equation is the same as a limiting case of (1.6) with N~ = 0 
and t ~  ~ **, apart from the last term, which should be written differently: 4kS(2/a~ + 1). This is a consequence 
of an inaccuracy by the author. The fight-hand side of Bubnov's equation (40) should contain the fraction Tilt + 
(1 - -  112)T] in place of T/(t + 1). 

A generalized solution of the problem under consideration with the inaccuracy removed was given by Bubnov 
in [10, 11, Section 25]. He stated the following formulae describing the process of deformation of the panel. 

The equation relating the outward force parameter to the vertical load 

9E(I - E) {1 - I x  + (1 - x)~-~-]x(u)}  + 4u 6 

(2.1) 
2 S 0 

+ ( I _ £ ) 2 F ( ~ , u ) =  l ( 4  / ( h  ~ ( l _ p L . )  
tp , )  t2a) t, P.-) 

where e = 2pzhco/0Jxa 2) is the reduced initial irregularity of the panel (Co is the largest initial deflection amplitude), 
which in the notation of the present paper corresponds to k2~q *, as does a from [9]. The other variables 
and functions in this equation can be described as follows: 

F(ae, u) = (I - a~)U o + aeU I - ae(I - ~ ) U  2 ) 

9 27 5 ( u - t h u ) - u t h 2 u  
U° - 8u 6 16 u 9 

U I = 

U 2 = 

45 27 ( u - t h u ) ( u + 4 t h u )  
16u 6 16 u 8 th 2 u 

27 (u-thu) 2 (uth 2u_u+thu) 
u9th2u 

h and a are the thickness and half-width of the plate (in the present paper they are denoted by h and//2),pz is the 
expanding stress in ':he panel (N/h),p ° is the expanding stress at the edges of the panel (No/O,p ° is the uniformly 
distributed vertical load (q), and K and ~ are the dimensionless transverse and bending compression--expansion 
stiffness of the supports of the panel described by 
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o~ N 
° i 

2 + l X , v ( l _ N o l k 2 ) - I  X= 

° 

ot M th(k / 2) 

k + a~¢ th(k / 2) 

in the notation of the present paper. By the outward force parameter u we mean a slightly different variable than 
in [9]. In the present paper it is denoted by k/2, rather than/,:2/4, as before. 

The relationship for the maximum deflection of the panel 

E h---- 3 -  f ( m , u )  

where 

f(~,u) -- 3"-~'(1 
1 2 ( 1  

f°(u) = 5u 2 I, 

A(u) = u2 t, 

- a:)fo (u) + 1 ~ A  (u) 

th(u / 2) / 
) 

These Bubnov's relationships are identical with (1.6) and (1.7) if they are rewritten in the notation of the present 
paper. 

3. D I S C U S S I O N  O F  B U B N O V ' S  R E S U L T S  

In [10, 11, Section 25, Fig. 78] Bubnov presented a graph resulting from a numerical study of Eq. (2.1) (the graph 
is shown in Fig. 7). It was obtained as follows. For specified values of the bending stiffness r of the supports and 
the right-hand side of the coupling equation the outward force parameter u was given. The largest initial deflection 
amplitude Co of the panel was determined from the quadratic equation for the reduced curvature e of the panel. 
It was observed that "for a negative deflection amplitude the curve consists of two branches, where branch BC 
corresponds to an unstable equilibrium of the plate, but for deflections whose absolute value exceeds the critical 
amplitude c~' the plate will be stable (branch AB)". At this critical deflection amplitude, if a bending load pO is 
applied, then inward stresses Pz will appear equal to the Eulerian ones and the imaginary argument u will reach 
its limit value (u = x'x/(-1/2) for ae = 0, and u = n'~/(-1) for ae = 1). Any further increase inp~ will change the 
curvature of the plate to the opposite one, so that the deflection amplitude c o will become positive, and the 
equilibrium of the plate will be stable. 

Thus, we can see that Bubnov came close to solving the problem of the snapping of weakly bent plates and flat 
shells. However, he restricted himself to a qualitative discussion, having presented in his Fig. 78 merely the possible 
types of behaviour of the panel, rather than the process of loading for a specific panel. Besides, Fig. 78 is just a 
small part of the true picture. 

In fact the behaviour of the panel can be described by infinitely many curves forming a family of lines unbounded 
in the domain of negative values of the square of the outward force parameter u. This can be seen in Fig. 8, 
where c[  = co/h is given as a function of u 2 using Eq.4(2.1 ) for a panel on a hinged support with parameters 
K = 1, m = 0, la = 0.3,p ° = 0 and (1 - ~2)(p°ffE)(2a/h) = 30. Here a version of Eq. (2.1) with u replaced by/u 
was used for the negative values of u 2. 

A similar equation in the notation of [8], in particular for a parabolic bar with a hinged support subject to a 
uniform vertical load can be written as [12] 

[ ,2 k-ssi.k ]( 1 2 + - - +  q.  2 
2k 6 12 2 k c o s 2 ( k / 2 )  

8r :,n,< 
- ~ L F  co-~(k / 2) 

(3.1) 

where the dimensionless load q*, the outward force parameter k and the bar geometry parameter m are given by 

ql 4 k 2 Nl 2 4J  
q° = - ~ '  = -  EJ ' m = ~ FH 2 
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Here q is the vertical load, uniformly distributed along the bar, N is the outward force in the bar, 1 and H is the 
length and the elevation amplitude of the bar, E is the modulus of elasticity of the material, F is the area of cross- 
section of the bar and J is its moment of inertia. 

The parameters ha (3.1), which are denoted by a subscript [G], are related as follows to the parameters in Bubnov's 
equation (2.1) marked by [B] and the parameters in the equations in the present paper (these are indicated by 

I/q) 

k[2] = - I - 7 2 = E = - 1 - II 2 

q. _,~p°tnlf2a~4 h _  q~u, h 
[~}-'" e t Y ) c o - 1 - ~ 2 ~  

(3.2) 

1¢ h ~2 l:  h ~2 =-8 . -~  
m'~':~tm-oJ :~ t~ . J '  ~''' ,,,~, 

_Eq0 uations (1.6) and (2.1), written for a panel with a hinged support (0~ --* 0% ct~ = 0, N~ = 0 and K = 1, a~ = 0, 
Pz = 0, respectively) in the case when the panel is bent in the opposite dire~'tion to the vertical load, reduce to 
(3.1) only if the factor (1 - p2) is omitted when transforming the parameters. This means that the bending and 
longitudinal stiffne.~ of the bar will change as the parameters are replaced by the cylindrical stiffness and the 
compression-expansion stiffness of the panel. For the above-mentioned equations to be exactly the same one must 
use the following relations in place of (3.2) 

" . 2~ P=[B] ( 2 a ~  2 

o 
• 2~ Px[al ( 2 a ~  4 * h 

q{Gl = 12(I h - -  = q [ n l - ~  
- ~  ) - ~ - t - r  ) % 

='-¢" 1 '-¢" 7 n~c] 3~,co)  = 3 t ,  H J  ' e [ B ] = - 8  . 
qto] 

k2 

L ~ 8  '°6 km 
r r l , .O,  _ ~ 

 -41 i 1< 
" ~  8x" -eOO_l~l [ 

; I ooJ~ i 8.1" 20o ¢ 
~ ' " - - - - -  ' C ' 

w~ ~ ~ 

Fig. 10. Fig. 11. 
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It then becomes possible to transform the curves obtained in [8, 12] for the solution of Eq. (3.1) representing a 
real process of loading an arch or panel into the curve field in Fig. 78 of [10, 11], which shows the possible equilibrium 
states of various panels, and vice versa. For a uniformly transversely loaded bar (panel) with a hinged support and 
various values of the geometry parameter  m the load curves look as in Fig. 9. If Fig. 8 is transformed into the 
coordinates in Fig. 9, then Bubnov's curve (Fig. 10) will be the geometric locus of the points describing stable and 
unstable equilibrium states of a panel related to one another by 

qtG] = 432(1 - b t  2)2 S = 388800 
m[G] 

Although Bubnov was the first to develop a mathematical model of the deformation of the weakly curved panel, 
it should be noted that he failed to represent the stability loss of the panel completely. When discussing the 
deformation of the panel he made an error in identifying the stable and unstable branches of the loading trajectories, 
asserting that stability loss of a panel with a hinged support occurs when the outward force parameter is equal to 
the first Eulerian critical force k'2[Cl = ---4u2~1 = ~.2, since "any further increment of the loadp]  will cause a change 
in the plate curvature to the opposite one. However, as can be seen in Fig. 11 for a parabolic panel or in Fig. 4 
for a sinusoidal bar, this is not so. If the panel is subject to a distributed load on the convex side, its stress--strain 
state will be represented by a point moving along the loading line from O through B towards C and D as the load 
increases, the outward force parameter  at B being equal to the first Eulerian critical force, but there will be no 
stability loss. Symmetric stability loss occurs at D with a jump of the loading process to J or, when the value of the 
outward force parameter k" corresponding to the symmetric stability loss is greater than the second critical Eulerian 
force, asymmetric stability loss will take place at C with a jump to I. However, Bubnov considered B to be a critical 
point, apparently assuming a jump from B to H. 

For asymmetric stability loss the value of the outward force parameter is equal to 4~ ,  the second critical Eulerian 
force for a fiat panel [8]. Possibly, had Bubnov analysed the behaviour of the panel in detail without restricting 
himself solely to the first Eulerian critical force, he would have been led to the idea that the first Eulerian critical 
force is not critical for a panel and that asymmetric stability loss is possible. 

Bubnov's partial study of the behaviour of a parabolic panel did not enable him to understand its behaviour 
mechanism completely. However, he evidently did not aim to achieve this, but, as an engineer, to solve a practical 
problem arising in ship building. The parameters of the problem he chose did not reveal the full behaviour pattern 
of a panel subject to a load. Of course it is now too late to ask if Timoshenko was aware of Bubnov's results [9, 
10]. Clearly, he was. It is a different matter whether or not these results inspired him to solve the problem of the 
buckling of a bar subject to a load. Undoubtedly, this was not so, and the idea of studying the problem occurred 
to him in relation to the behaviour of curved bimetal strips, an approximate theory of which he developed. 

In any case, it is evident that Bubnov was the first to state the Foeppl-KArmlin-Marguerre equations for finite 
deflections of KLrm~tn thin-walled elastic surfaces. His results on the behaviour of circular plates as well as plane 
and curvilinear panels entitle him to this claim. As regards the problem of the snapping of thin-walled surfaces, 
it should be observed that Bubnov was the first to obtain a solution of the non-linear problem of the behaviour of 
a parabolic cylindrical panel, which in principle makes it possible to draw all the necessary conclusions obtained 
subsequently by others (Timoshenko and Grigolyuk). Unfortunately, Bubnov could not and did not try to use his 
results to formulate the general problem of shell stability. Timoshenko, who devoted a number of research projects 
to this theory, did not raise this question either. But ICairmfm and Tsien's work [6] on the snapping of a spherical 
dome under uniform radial pressure must have been strongly influenced by Timoshenko's result [2] on the problem 
of the stability loss of a shell under finite deflection, since the model of a spherical dome is very close to that of a 
flat bar. 
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